
Chapter 9

Symmetry in quantum mechanics

9.1 Introduction

Right and so we begin the ‘symmetry in quantum mechanics’ part of the course. My aim here
is to give you a little taste of group and representation theory and its relevance to quantum
mechanics. You will not learn much new actual physics in this section - but I hope to try and
convey the deep mathematics underlying many quantum phenomena that you have already seen
(e.g., the presence of degeneracy, the addition of angular momentum, and, if we have time,
dephasing). Group and representation theory is a massive area of mathematics and I will only
scratch the surface - my main aim is to make it relatively friendly to leave you comfortable
with the basic ideas and keen to learn more for future courses/projects! One thing that is
perhaps worth highlighting here is group theory appears in all sorts of places you don’t expect
it. For example, it can be used to encode symmetries for more efficient machine learning models.
Therefore, even if you are fed up of physics and cannot wait to get a job earning money as a
software developer - this part of the course could be very useful for you.

These notes are driven by the pedagogical philosophy that most people learn best by examples
and intuition. Therefore, throughout these notes I try as hard as I can to provide examples
and more informal handwavey explanations of the key ideas wherever possible. In places I have
sacrificed some formality to do so. I have also for the sake of time relegated some of the longer
proofs to the appendices. If you are interested in a more formal presentation of this material
(and more that I will not cover) I have uploaded to moodle Vincenzo Savona’s old notes (in
French and English). However, I hope my notes will prove helpful to those of you who also like
examples and an attempt at more wordy explanations. For those of you that do like a ‘physicist-
approach-to-maths’ I cannot recommend enough Group Theory In A Nutshell For Physicists.
It’s longer and more detailed that you will need for this course but a very friendly read. I’ll try
and point out useful sections where relevant. Lie Algebras for Physics is also good but its even
more detailed than needed.

9.1.1 Motivational examples: Symmetry is everywhere in quantum!

Spatial translations. By way of introduction let’s start with a simple example considering
spatial translations that I have borrowed from Terry Rudolph. Suppose I asked you to write
down a wavefunction ψ(x) that is invariant under arbitrary translations in x, i.e. x → x + a for
any a. What could you write down?

Intuitively if it’s anything other than constant in x then the function will not be spatially
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invariant, i.e. we’ve got to have ψ(x) = constant. In Terry’s words - It is questionable whether
this is valid - is it normalizable for example? But imagine we plough ahead like good physicists
and ignore the mathematical difficulties. If we Fourier transform this wavefunction then we
get that this wavefunction can be written in the momentum basis as ϕ(p) = δ(p) (the Fourier
transform of the constant function is a delta function).

But is this the only function that is invariant under spatial translations? What if we instead
consider a function of the form ψ(x) = eipx? Then we see that translating x → x + a produces
only an extra "overall phase" of eipa. This is a global phase and so doesn’t change anything
physical about the state. That is, the state is (up to a non-physical global phase) also invariant
under translations. If we again Fourier transform to the momentum representation we now
have ψ(x) = eip′x is ϕ(p) = δ(p − p′), so this is a state of fixed definite momentum p′. That is,
momentum is conserved in this translationally invariant state.

In Terry’s words again we learn two things from this example: (i) that we should only expect a
small subset of the possible quantum states to obey a particular symmetry, and (ii) that there
can be an intimate connection between a particular observable (momentum) and that symmetry.

Now imagine we have prepared one of these translationally invariant states, e.g. a momentum
eigenstate. Under what Hamiltonian evolutions will it remain translationally invariant/a mo-
mentum eigenstate? Intuitively we need any potential V (x) to also be translationally invariant,
otherwise this will break the initial translational symmetry. This means the only potential
Hamiltonian is the free particle Hamiltonian H = 1

2m p̂
2. Or, more concretely, we require that

[e−ip̂b, Ĥ] = 0. (2)

which will be true for any Hamiltonian such that [p̂, Ĥ] = 0. Thus we see that the property of
translational symmetry is associated with ‘conservation of momentum’.

A similar story could be told about the relationship between rotational invariance and angular
momentum. And both of these cases are symptomatic of a much deeper story about the intimate
connection between conservation laws and stuff that commutes with a Hamiltonian and symme-
tries. This can be made precise and of sweeping generality in Noether’s theorem. But let’s start
with the basics and pin down a more general mathematical formalism to discuss symmetries.

The mystery of degeneracy. When you diagonalize a generic Hermitian matrix, the eigen-
values will in general be distinct. But for physical Hamiltonians of quantum systems we often
find that the eigenvalues are degenerate - that is there are distinct eigenstates with the same
eigenenergy. In the early days of quantum mechanics this was somewhat surprising! We will see
that this can be explained by symmetry properties of a system.

Consider a unitary transformation U that leaves H invariant, i.e.,

U †HU =H . (9.1)

Or, equivalently, we have
HU = UH . (9.2)

Given that U commutes with H we have that if H ∣ψ⟩ = E∣ψ⟩, then

HU ∣ψ⟩ = UH ∣ψ⟩ = UE∣ψ⟩ = EU ∣ψ⟩ . (9.3)
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That is, the action of U on a state ∣ψ⟩ produces an eigenstate of H with the same energy E.
Or, in other words, U produces another degenerate eigenstate.

More generally, given a family of transformations {U} there will be a corresponding family of
degenerate energy eigenstates. That is, the presence of a symmetry gives rise to degeneracy. We
will see later how group and representation theory will provide a means of predicting/explaining
the number of degenerate states.

9.1.2 Introduction to groups

A symmetry describes some property of a system, i.e. some function f or of some dataset R,
which is left unchanged under some transformation. As we are, for the purpose of this course,
predominantly interested in quantum systems, let’s suppose that the transformation refers to
a unitary evolution1 applied to the quantum state, i.e., to a map ρ → UρU † for some U . Now
crucially, such symmetry transformations form a group.

Proposition 9.1.1. Let G be the set of all unitary symmetry transformations, such that for
any U ∈ G, the map ρ → UρU † leaves some property of ρ unchanged. Then, G, equipped with
multiplication, forms a group.

What is a group?

Definition 9.1.2. A group is a set equipped with an operation that combines any two elements
to form a third element while being associative as well as having an identity element and inverse
elements.

Formally, one can write a set G equipped with the operation "∗" is a group if one has:

• G is closed under the operation ∗. That is, if a ∈ G and b ∈ G then a ∗ b ∈ G.

• Associativity: ∀a, b, c ∈ G, one has (a ∗ b) ∗ c = a ∗ (b ∗ c).

• An identity element: There exists an element e ∈ G such that e ∗ a = a ∀a ∈ G. Such an
element is unique and is called the identity of the group.

• Inverse element: ∀a ∈ G, it exists b ∈ G such that b∗a = a∗ b = e. We then say that b = a−1.
For each e the element a−1 is unique and is called the inverse of a.

How can we see that any unitary that leaves a property invariant forms a group with ∗ matrix
multiplication (i.e. that Proposition 9.1.1 is true)? With a little thought we can see that each
of the defining properties of a group are satisfied.

• Closure: Given any two unitaries U and V in G, the unitary V ∗U obtained by multiplying
V and U is also a symmetry transformation. This follows from the fact that concatenating
two property-preserving transformations ρ → UρU † → V ∗ UρU † ∗ V † constitutes in itself
a property-preserving transformation.

• Associativity: for any unitaries U , V , W we have U(VW ) = (UV )W .

• Identity element: Clearly the identity matrix I leaves any property of a state unchanged
and for any unitary we have IU = U and so I is indeed the identity element e.

1We will encounter and work with symmetry representations that are ostensibly not unitary. However, a
wide class of representations are equivalent to unitary ones. In particular, Wigner’s theorem guarantees that all
symmetry transformations of quantum states preserving inner products are either unitary or antiunitary, and
often antiunitary transformations are “unitary and complex conjugation”.
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• Inverse: For each U in G, there exists an element U † in G such that U ∗U † = U † ∗U = I,
where I is the identity matrix, and U † is the inverse (conjugate transpose) of U because
if U conserves some property, then U−1 also conserves that property.

In broad terms groups encode abstract symmetries, and representations describe concrete re-
alisations of those symmetries in physical systems. In most maths courses people learn about
groups first before moving onto representations later. However, in practise, in everyday physics
we often identify symmetries at the level of the representation and then “abstractify” them: i.e.
connect a familiar physical symmetry with some familiar abstract mathematical group.

To quote Representation Theory for Geometric Quantum Machine Learning: "The main utility
of this abstractification procedure is that groups as mathematical objects have been thoroughly
studied since the early 19th century, and a wealth of information is readily available for scores of
them. Moreover, in the eyes of physics, the list of abstract groups is surprisingly short, thanks in
large part to classification programs for finite groups and semisimple Lie groups—and nature’s
seeming preferential treatment of these groups—this means that identification is direct in many
cases." That is, if you have a physics (or perhaps even a classical machine learning) problem
and can identify the relevant group - odds are some long dead mathematician has already half
solved your problem and so you can save yourself a lot of work.

In broad terms a representation is a map from the elements of a group to a set of unitaries2 such
that the unitaries obey the same properties under composition as the original group. We will
define this more formally later but I just wanted to mention it informally now because I think
it helps to understand why we care about groups in the first place- the key point being often
in practise we will identify the representation first and then abstractify to find the underlying
group and then plug in centuries of maths to help us understand it better.

9.1.3 Finite group examples

Groups can be either finite or continuous. Let’s consider some examples of finite groups first.

Definition 9.1.3 (Finite group). A group that contains a finite number of element is called a
finite group. The number of element is called the order of the group.

One way to uniquely identify a group is via its Cayley table. Named after the 19th century
British mathematician Arthur Cayley, a Cayley table describes the structure of a finite group
by arranging all the possible products of all the group’s elements in a square table reminiscent
of an addition or multiplication table. Many properties of a group can be discovered from its
Cayley table.

Order 1 group. The only group with only one element is the trivial group containing just
the identity element, e.g. G = e. Its Cayley table can be written as:

∗ e

e e
(9.4)

A possible representation of this group is e→ I.

Order 2 group. The unique Cayley table for a group with only two elements is the group
where the only non-identity element is its own inverse element, e.g. G = e, a such that aa−1 =

2Representations need not strictly be unitary but essentially all the ones we’ll care about here will be.
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aa = e, i.e.
∗ e a

e e a
a a e

(9.5)

One possible group with this Cayley table is G = {1,−1} with ∗ standard scalar multiplication.
(In this case, the map e→ 1 and a→ −1 is a representation of the group)

Other examples include the groups composed of G = {I,X}, G = {I,Z} and G = {I,SWAP}
with ∗ matrix multiplication. (In this case, the maps e→ I, a→X and e→ I, a→ Z and e→ I,
a→ SWAP are representations of the group).

Another possible group with the same Cayley table is the parity group that contains the "trans-
formation in the mirror" that turns x into −x. Let us define the operator P̂ such that P̂ f(x) =
P̂ f(−x) . Given P̂ P̂ = 1, we see that the set of transformation {1, P̂} form a group.

All of these groups are isomorphic (share the same Cayley table) to the Z2 group (cyclic group
on 2 elements). The Cayley table captures the fundamental symmetry but it can manifest in
different ways.

Order 3 group. The unique (it might not be obvious now that it is unique - we will come
back to this in a bit) Cayley table for a group with only three elements is the Z3 group (cyclic
group with three elements):

∗ e a b

e e a b
a a b e
b b e a

(9.6)

An example of such group is the set of 2D rotations that leave a triangle invariant. Or the 3rd
roots of unity in the complex plane aj = ei2π

j
3 equipped with multiplication.

Order 4 groups. Again we can consider the cyclic group Z4

∗ e a b c

e e a b c
a a b c e
b b c e a
c c e a b

(9.7)

An example of such group is the set of 2D rotations that leave a square invariant. Or the 4th
roots of unity in the complex plane.

But 4th order is also the smallest order that is not unique. That is, there is another possible
Cayley table for a group of four elements that is not isomorphic (i.e. the same up to relabeling)
as the Cayley table above:

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

(9.8)
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Figure 9.1: Diagram of the symmetry group of a rectangle (dihedral group R2): (Wiki page on
the Dihedral group).)

Note that here each element is its own inverse but there are cyclic transformations between a,
b and c. An example of such a group would be the symmetries of a rectangle as sketched in
Fig. 9.1. The group elements are identity e, rotation r (in either direction) by π and reflections
h and v about the horizontal and vertical axes respectively.

Order 6 groups. Again we can consider the cyclic group Z6. Alternatively we can have:

∗ e a a2 b c d

e e a a2 b c d
a a a2 e c d b
a2 a2 e a d b c
b b d c e a2 a
c c b d a e a2

d d c b a2 a e

(9.9)

This is called the C3v group.. This is the symmetry group of a triangle as shown in Fig. 9.2.
There are 6 possible transformations that leave the triangle invariant:

• The identity e which leaves all coordinates unchanged.

• The proper rotation c+ by an angle of 2π/3 in the positive trigonometric sense (i. e.
counter-clockwise). And the clockwise version c−.

• Reflection along each axis (there are three of them).

See Fig. 9.2 for a sketch of this. The C3v also captures the symmetry of the Ammonia molecule,
NH3. There will be a question on the problem sheet this week on this. This will be one of our
favorite example groups so its worth becoming very familiar with it.

Other important (larger) finite groups include:
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Figure 9.2: Diagram of the symmetry group of a triangle (C3v). Note that I used the notation
c+ = C3 and c− = c− to denote the rotations but this image uses C3 and c−. I took this image
from (Fundamental properties of 2D excitons bound to single stacking faults in GaAs).)

The cyclic group Zn. For completeness, of course we can also consider the cyclic group of n
objects Zn

∗ e a1 a2 . . . an−1
e e a1 a2 . . . an−1
a1 a1 a2 a3 . . . e
a2 a2 a3 a4 . . . a1
⋮
an−1 an−1 e a1 . . . an−2

(9.10)

Examples of such groups include the set of 2D rotations that leave a regular n-sided polygon
invariant and the nth roots of unity aj = ei2π

j
n in the complex plane.

Symmetric permutation group Sn. The group is composed of the group of all possible
permutations of n object with the group operation the composition of functions.

As there are n! such permutations operations the order of the symmetric group is n!

For example, S3 = {I,SWAP12,SWAP13,SWAP23,CYCLE123,CYCLE321}. (What is the CAY-
LEY table for this group? 3)

This is a very important group in quantum physics as (as we saw earlier) it is the symmetry
group of systems of indistinguishable particles.

9.1.4 Continuous group examples

A non-finite group is a continuous group. Of particular importance are Lie groups 4.

Definition 9.1.4 (Lie group). Informally, a Lie group is a continuous group that depends
analytically on some continuous parameters λ.

We list some important examples of Lie groups below.

3Hint we have already seen that there are only two possible tables for an order 6 group
4Note that not all infinite groups are Lie groups! The set of all rational numbers equipped with addition is

infinite (but countable), but it is not a Lie group. But again, we’re physicists not mathematicians and all the
continuous groups we’ll care about (at least in this course) will be Lie groups.
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Real d-dimensional rotations SO(d). A classic example of a Lie group is the group of all
rotation matrices (i.e. orthogonal matrices with determinant 1) for real d dimensional rotation
vectors. An orthogonal matrix is the real analogue of a unitary matrix and is defined by the
properties R[M] =M and MMT =MTM = I. For an orthogonal matrix to be a rotation matrix
we also require that det(M) = 1.

For example, the elements of the group SO(2) (i.e. rotation matrices in 2D) can be written as

M(ϕ) = [cos(φ) − sin(φ)
sin(φ) cos(φ) ]. (9.11)

Another commonly encountered case is SO(3) which corresponds to all rotations in 3D.

The orthogonal group O(d). Another example of a continuous group is O(d) which is
simply the group of orthogonal matrices (i.e. without the restriction that the determinant of
the matrices equals 1). Orthogonal matrices preserve the inner product between real vectors
⟨x′∣y′⟩ = (⟨x∣OT )(O∣y⟩) = ⟨x∣OTO∣y⟩ = ⟨x∣y⟩. They thus correspond to rotations and reflections.

Note that the determinant of any orthogonal matrix is +1 or −1. This follows from 1 = det(I) =
det(MTM) = det(MT )det(M) = (det(M))2. Orthogonal matrices with a -1 determinant can
implement reflections, e.g.

M = [1 0
0 −1] (9.12)

performs a reflection of the vector (x, y) in the y-plane.

The unitary group U(d). U(d) is the group of d × d dimensional unitary matrices. This is
the group of matrices that preserve the length/inner product of quantum states.

For example, U(1) can be represented just as the unit circle in the complex plane [eiϕ]. Or it
can be represented as a rotation around any single axis on the Bloch sphere, e.g. [Rz(ϕ)] where
Rz(ϕ) = e−iϕZ .

Similarly, U(2) represents all 2-dimensional unitaries, that is all unitaries on a single qubit. We
recall that any single qubit unitary can be written as

R(n, θ, ϕ) = e−i(ϕI+θn.σ) (9.13)

where we stress that for full generality we need to include the global phase term generated by
ϕI. However, this global phase is unphysical. This motivates the consideration of instead the
special unitary group.

The special unitary group SU(d). SU(d) corresponds to the group of unitary matrices
with determinant 1. The restriction to determinant 1 effectively fixes the arbitrary global phase.
To see this note that multiplying a unitary matrix by a phase matrix e−iϕI manifests as a change
in the phase of its determinant as det(e−iϕIM) = det(e−iϕI)det(M) = e−idϕ det(M).

For example SU(2) corresponds to the group of unitary rotations to a single qubit that can be
written as

R(n, θ) = e−iθn.σ . (9.14)
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Recall that this can be represented as the set of rotations of the Bloch vector of a state on the
Bloch sphere. This would seem to be in some sense equivalent to the group SO(3), i.e. the
group of real rotations in 3D. Indeed the groups SU(2) and SO(3) are very closely related -
more on this in a bit.

9.2 Basic definitions and properties of groups
Now that you’re equipped with a whole zoo of examples let’s go back to looking at the basic
mathematical structure of groups and some of their most important properties.

Definition 9.2.1 (Abelian and non-Abelian groups). : If a ∗ b = b ∗ a ∀a, b ∈ G , the group G
is said to be Abelian. Otherwise it is called a non-Abelian group. These groups are also called
commutative and non-commutative.

For example, U(1) is Abelian (phases commute) but U(2) is not (arbitrary unitaries do not
commute). As we will see later, whether or not a group is Abelian effects some of their most
fundamental properties. (In particular, Abelian groups tend to be much simpler to study).

Another important concept is that of a subgroup.

Definition 9.2.2 (Subgroup). A subset H of the group G is a subgroup of G if and only if it
is nonempty and itself forms a group.

The closure conditions mean the following: Whenever a and b are in H, then a ∗ b and a−1 are
also in H. These two conditions can be combined (exercise: show this!) into one equivalent
condition: whenever a and b are in H, then a ∗ b−1 is also in H. The identity of a subgroup
is the identity of the group: if G is a group with identity eG, and H is a subgroup of G with
identity eH , then eH = eG.

Definition 9.2.3 (Proper Subgroup). We call a subgroup of G which is neither the identity nor
G itself a proper subgroup.

A fundamental result in the theory of finite groups is Lagrange theorem:

Theorem 9.2.4 (Lagrange). Let G be a finite group and H a subgroup of G, then the order of
H (i.e. the number of its elements) divides the order of G.

We prove this theorem in sec.9.10.2.

It is easy to see that this implies in particular that if the order of a group is prime then there
is only one possible group (i.e. one unique Cayley table) for that group. To see this note that
if the order n of a finite group G is a prime, then it has no divisors, and so no subgroups. The
only group with no proper subgroups is the cyclic one Zn for prime n - so this is the unique
group. Recall that I claimed earlier that Z3 was the unique group with 3 elements - this is why.

Let’s look back at the non-cycle 4th order group we discussed earlier with the Cayley table:

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

(9.15)
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Figure 9.3: Diagram of injective, surjective and bijective functions: (Wiki page on functions).)

This has subgroups {e, a} and {e, b} and {e, c} which are all Z2 groups. Or, thinking more physi-
cally and recalling that this corresponds to the symmetries of a rectangle as sketched in Fig. 9.1,
identity and any one of the transformations (e.g. rotation by π, reflection in the horizontal axis,
reflection in the vertical axis) each forms a group because each of these transformations are
self-inverse.

Exercise: What are the subgroups of C3v group? Does this make sense in terms of the symme-
tries of the Ammonia molecule, NH3?

Group Homomorphism and isomorphism The final important concept I will discuss in
this section is that of group homomorphisms and isomorphisms. This formalises the important
idea that I have been repeatedly hinting at but glossing over - the idea of superficially different
looking groups being the same in some sense.

A group homomorphism, is a mapping between two groups which respects the group structure:

Definition 9.2.5 (Group homomorphism). A function from a group (G,∗) to the group (G′,⋆)
is an application f ∶ G→ G′ such that ∀x, y ∈ G f(x ∗ y) = f(x) ⋆ f(y). (This implies that
f(e) = e′, where e and e′ denote the respective neutrals of G and G′ and f(x−1) = f(x)−1.)

For instance, it is always possible to create a morphism of any finite group to the trivial group
by mapping all the elements to e′. A less trivial example is that the group Z2 is homomorphic
to Z = {. . . ,−3,−2,−1,0,1,2, . . .} equipped with addition using f(x) = 1 for even numbers and
f(x) = −1 for odd numbers for x ∈ Z.

A homomorphism from f ∶ G→ G′ can be bijective, i.e. be a map with a one-to-one correspon-
dence between elements in the domain and range as sketched in Fig. 9.11. In this case, we call
the mapping an isomorphism.

Definition 9.2.6 (Group isomorphism). A group isomorphism is a function between two groups
that sets up a one-to-one correspondence between the elements of the groups in a way that
respects the given group operations.

If there exists an isomorphism between two groups, then the groups are called isomorphic. From
the standpoint of group theory, isomorphic groups have the same properties and need not be dis-
tinguished. In the case of finite groups, this means that the groups have the same Cayley table.
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For example, G = {1,−1} with ∗ standard scalar multiplication, G = {I,X} or G = {I,SWAP}
with ∗ matrix multiplication are isomorphic to Z2. Similarly, multiplication on the unit circle in
the complex plane [eiϕ] and rotation around any single axis on the Bloch sphere, e.g. [Rz(ϕ)]
where Rz(ϕ) = e−iϕZ , are isomorphic to U(1). (However, Z2 is homomorphic, but not isomor-
phic, to Z equipped with addition).

105



Quantum Physics II CHAPTER 9. SYMMETRY IN QUANTUM MECHANICS

9.3 Basic definitions and properties of representations
Let us now return to representations. As I mentioned earlier groups encode abstract symmetries
but representations describe concrete realisations of those symmetries. Informally, a represen-
tation of a group captures the action of a group on a vector space (e.g. on quantum states).
In particular, in a quantum context, it is a map from the elements of a group to a set of uni-
taries such that multiplication of that set of unitaries obeys the same properties as the original
group. For example, the group Z2 can be represented as {1,X} and {1,SWAP} acting on C2

and (C2)⊗2 respectively. We can formally define the notion of a representation of a group via
the notion of homomorphisms introduced above.

Definition 9.3.1 (Group representation). A representation R of a group G on a vector space
V is a group homomorphism 5 from G to a set of matrices that act on a vector space V .
The dimension of a representation R is defined to be the dimension of the vector state V , i.e.,
dim(R) = dim(V ).

We can think of this pictorially as:
g1 ⋅ g2 = g1 ⋅ g2

↓ ↓ ↓ ↓

D(g1) ⋅D(g2) =D(g1 ⋅ g2)

where D(g) is a d × d dimensional matrix that acts on a d dimensional vector space V .

We stress that formally a representation is by definition the map R. However, more informally
the word representation is used in multiple ways. For example, informally you might hear some-
one discuss the {1,SWAP} representation of Z2. Technically {1,SWAP} is a group (that is
isomorphic to Z2) and the representation is the map R such that R(e) = I and R(a) = SWAP
(where the properties of a and e are captured by the Z2 Cayley table). As long as you remem-
ber that fundamentally it is the underlying map that is the representation, this casual way of
speaking shouldn’t cause too much confusion in practise6.

Let us give a few examples:

Trivial representation. All groups admit a trivial representation (or the Identity represen-
tation): ∀g ∈ G,R(g) = I.

Examples representations for the parity group Z2 = {e, a}.

• As we said before we have the representations G = {1,X} and GSWAP = {1,SWAP} acting
on C2 and (C2)⊗2 respectively. You could also have7 G = {1, Z} on C2.

• On R it has two representations: 1) the trivial representation R(g) = 1 for g = e, a, as well
as 2) the representation R(e) = 1,R(a) = −1.

5in most cases we will look at it will also be an isomorphism, i.e., a one-to-one map
6This subtlety is put nicely in Representation Theory for Geometric Quantum Machine Learning: As an

unfortunate feature of the subject, the word “representation” can equivalently refer to the group homomorphism
R, the vector space upon which it acts V , or the image subgroup R(G) ⊂ GL(V ). Once one gets used to this, it
is not as bad as it sounds: in practice, one often thinks of a representation as being the shared data of the vector
space V and the linear action of G on that vector space.

7This is in fact equivalent to the G = {1,X} as they are related by a unitary transformation. More on equivalent
transformations in a bit.
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• The trivial representation {I} can also of course be defined on a vector space of any
dimension.

Examples representations for O(3). Consider O(3) the group of orthogonal matrices in
dimension d = 3. We recall that this is the set of all 3 × 3 matrices M such that MMT = I.

• The simplest representation, called the fundamental representation, is simply the set of all
3 × 3 orthogonal matrices.

• The morphism R(g) = det(M) = ±1 is a representation of O(3) on the vector space R
(indeed det(AB) = det(A)det(B)).

Fundamental representation of continuous groups. All continuous groups have the a
‘fundamental’ representation where the matrices in the group and the matrices in the represen-
tation coincide (“up to change of basis”)8.

Adjoint representation. Another important representation that is possible for any group
is the adjoint representation. Thus far we have considered representations that map vectors
to vectors, it is also possible to consider representations that map matrices to matrices. Let
V =M2(C) denote the set of 2 × 2 complex matrices. The linear super-operator

A↦ UgAU
†
g (9.16)

where Ug = R(g) is a possible representation of G. For example, U...U † for U ∈ SU(2) is a
representation of SU(2).

So far we have spotted the representations corresponding to a symmetry group just by ‘seeing
them’. In fact, as I discussed earlier, the process often in physics goes the other way around.
We know the symmetry at the level of the representation and then abstractify to identify the
underlying group. But what about going the other way around - what if we have a group, and
don’t know any of its (non-trivial) representations, and want to find one?

Regular representation of finite groups. All finite groups admit what is known as the
‘regular’ representation as one of its representations.

Definition 9.3.2 (Regular representation). For a finite group of order h, one can construct the
so-called regular representation using h × h matrices as follows. First start from the following
reordered Cayley table (here for h = 3):

C =

∗ e a−1 b−1

e e a−1 b−1

a a e ab−1

b b ba−1 e

(9.17)

Now the representation can be done using the following matrices for g ∈ G: We use a matrix
which is zero everywhere except for the position that corresponds to the group element in the
Cayley table:

(R(g))ij = δg,Cij (9.18)
8Note that although the matrices between the group G and its representatives {Rg ∶ g ∈ G} ⊆ GL(V ) are

identical, we think of the abstract group and its representatives as conceptually distinct.

107



Quantum Physics II CHAPTER 9. SYMMETRY IN QUANTUM MECHANICS

With this definition, e is represented by the identity matrix R(e) = I. It is easy to check that
these matrices indeed follow the group algebra. You’ll work through some examples of this in
the problem sheet.

It is also possible to construct representations from a simpler (set of) already known represen-
tations.

Equivalent representations. Consider a group G and a representation R(g)∀g ∈ G. We
define now R′(g) = SR(g)S−1 where S can be any invertible matrix (in practise, in most cases
we come accross, it will be a unitary matrix). This is a similarity transformation9. It is
easy to see that similarity transformations of representations are still representations. It is
straightforward to verify that R′(g) is a representation of G (i.e., if R(gh) = R(g)R(h) then
R′(gh) = SR(g)R(h)S−1 = SR(g)S−1SR(h)S−1 = R′(g)R′(h)).

Definition 9.3.3 (Equivalent representation). Two representations D and D′ are equivalent if
they are related by a similarity transformation R′(g) = SR(g)S−1.

Roughly speaking, representations are equivalent if we can transform one to the other by a
linear invertible transformation. If what follows, we shall be mainly concerned by unitary
representations and transformations. In this case SS† = 1 and S† = S−1. This means that we
shall consider two representations as equivalent if they simply correspond to a change of basis:
R′(g) = UR(g)U †.

Tensor product representation. For example, consider two representations R1 and R2
for a group G, it is straightforward to verify (check this!) that the tensor product of their
representations R1 ⊗R2, i.e. the set of matrices such that

R1(g) ⊗R2(g) (9.19)

for each element g, is also a representation. For example, {I ⊗ I,Z ⊗ Z} is a representation of
Z2 (in fact, {I⊗k, Z⊗k} is a representation for any k).

Tensor product representations are fundamental in physics whenever we take the symmetry
property of a single system and want to study the properties of a composite system. For ex-
ample, suppose we have a system of n particles each of which are SU(2) symmetric. In this
case, we will be interested in the representation of SU(2) on (C2)⊗n, and so a natural choice is
SU(2)⊗n.

Direct sum representation. Another useful composite representation, one that plays a key
role in physics, is the direct sum representation.

Definition 9.3.4. Consider two representations R1,R2 of a group G acting on vector space
V1, V2. The direct sum R1 ⊕R2 is a representation of G acting on V1 ⊕ V2 defined by

(R1 ⊕R2)(g)(v1, v2) ∶= (R1(g)v1,R2(g)v2), for all g ∈ G. (9.20)

Or, writing the matrices out explicitly, R1 ⊕R2 acting on V1 ⊕ V2 we have:

(R1 ⊕R2)(g) ∶= (
R1(g) 0

0 R2(g)
) , for all g ∈ G. (9.21)

9In linear algebra, two n × n matrices A and B are called similar if there exists an invertible n-by-n matrix P
such that B = P −1AP .

108



CHAPTER 9. SYMMETRY IN QUANTUM MECHANICS Quantum Physics II

That this is indeed a representation follows straightforwardly from the block structure of Eq. (9.21).
(If this isn’t immediately clear to you, do work through it explicitly). We can also take the direct
sum of the same representation, i.e., R1 ⊕R1, in which case we say that R1 has multiplicity of
two, and we write

(R1 ⊕R1)(g) = (
R1(g) 0

0 R1(g)
) = I ⊗R1(g), for all g ∈ G. (9.22)

Notice that due to the block structure of a direct sum representation the action of an element
of the representation structure of a group leave certain subspaces invariant. This will turn out
to be very important.

Hopefully it is now clear how you can take simple representations of a group and create more
complex ones. In many cases, we will in fact be more interested in going in the other direction.
Taking a complex representation and trying to break it down into a simpler one. More concretely,
one of the things representation theory is most useful for is taking a representation (e.g. say a
tensor one), and expressing it as a direct sum of representations on smaller subspaces. We will
discuss this in Section 9.4
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